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Abstract
We study extremely diluted spin models of neural networks in which the
connectivity evolves in time, although adiabatically slowly compared to
the neurons, according to stochastic equations which on average aim to reduce
frustration. The (fast) neurons and (slow) connectivity variables equilibrate
separately, but at different temperatures. Our model is exactly solvable in
equilibrium. We obtain phase diagrams upon making the condensed ansatz
(i.e. recall of one pattern). These show that, as the connectivity temperature
is lowered, the volume of the retrieval phase diverges and the fraction of
mis-aligned spins is reduced. Still one always retains a region in the retrieval
phase where recall states other than the one corresponding to the ‘condensed’
pattern are locally stable, so the associative memory character of our model is
preserved.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

Most statistical mechanical studies of recurrent neural networks have traditionally been
concerned with systems in which the dynamical variables are either the neurons (see, e.g.,
[1–4] or the reviews [5, 6] and references therein), or their interactions (or synapses, see, e.g.,
[7–10] or the reviews [12–14] and references therein). The first type of processes describe
network operation, whereas the second correspond to learning. These areas have by now been
investigated quite extensively. In contrast, only a modest number of studies involved coupled
dynamical laws for both neurons and interactions [15–22], to reflect the complex dynamical
interplay between synapses and neurons found in the real brain. The approach usually adopted
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in the latter studies, to obtain analytically solvable models, is the introduction of a hierarchy
of adiabatically separated time scales, such that the fast variables (taken to be the neurons)
are in equilibrium on the time scales where the slow variables (the interactions, taken to be
symmetric) evolve. One can also introduce further levels in the hierarchy by introducing
different classes of interactions, each evolving on different characteristic time scales [22].
The resulting formalism involves nested replica theories, with Parisi matrices [23] in which
the number of blocks at each level is the ratio of temperatures of subsequent levels in the
hierarchy of equilibrating degrees of freedom. Such models can also serve to derive Parisi’s
replica symmetry breaking (RSB) scheme [24]. In neural network studies, the dynamics of
the interactions have usually been governed by Langevin equations in which the deterministic
forces are proportional to expectation values of neuronal pair correlations (with the neuron
state statistics corresponding to Boltzmann equilibrium, given the instantaneous values of the
interactions), potentially biased to reflect the possibility of recall of a pattern. In [18, 19], the
interactions were taken to evolve away from an initial state given by Hopfield’s [1] interaction
matrix, with an extensive number of stored patterns. There it was found that for low interaction
temperatures, the network collapsed into an undesirable so-called ‘super-ferromagnetic’ state,
whereas for negative replica dimension (corresponding to anti-Hebbian learning) the storage
capacity of the network was found to be enhanced.

All papers dealing with the theory of coupled neuronal and interaction dynamics published
so far assumed full connectivity: each neuron interacted with every other neuron, with the
magnitude and sign of the interactions evolving in time. Here we propose and study a model
of a symmetrically diluted recurrent neural network in which the connectivity is allowed to
change slowly. On time scales where the neuron variables are in thermodynamic equilibrium,
the microscopic realization of the (discrete) dilution variables (reflecting the connectivity) is
allowed to evolve slowly and stochastically, driven by forces aiming at a reduction of global
frustration, without however changing the actual values of the bonds (the latter are frozen,
given by Hopfield’s [1] recipe). It has been known that one may store information in recurrent
neural networks solely by eliminating frustrated bonds, but this has always been done by hand
(see, e.g., [25] and references therein). Here the system is allowed to adapt its connectivity
autonomously. It should be emphasized that there is an important difference between having
dynamic bonds with Hebbian-type dynamical laws, as in [15–17, 20–22], and the present
situation of having dynamic connectivity with fixed Hebbian values for active bonds. The
former definitions imply irreversible modification or even elimination of stored information,
whereas in the present paper, since the values assigned to the active bonds are not modified,
the slow adaptation is fully reversible (one can always return to random dilution) and all stored
information is retained.

The scaling with the system size N chosen for the average connectivity c in the system
(the average number of bonds per spin) will have a strong influence on the structure of the
resulting theory. In this first paper, we consider the so-called ‘extreme dilution’ regime
[26], defined by limN→∞ c−1 = limN→∞ c/N = 0 (a second paper will be devoted to the
finite connectivity regime, where c = O(N0) as N → ∞). We solve our coupled spin and
connectivity dynamics model analytically, in replica-symmetric (RS) ansatz. We find that, as a
result of the connectivity adaptation, the network connectivity becomes more ordered to boost
retrieval of condensed patterns, as a result of which the system’s retrieval phase is enhanced
compared to that of the corresponding network with a quenched random connectivity matrix
as studied in [26], and that the fraction of ‘misaligned spins’ is reduced as the temperature
of the connectivity variables is lowered. Yet one still retains regions in the phase diagram
where the alternative (presently non-condensed) pure retrieval states remain locally stable, so
that the system continues to function as an associative memory.
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2. Definitions

We study diluted Hopfield [1] type recurrent neural networks, with (fast) binary neurons
σi ∈ {−1, 1} (denoting quiet versus firing states) and i = 1, . . . , N . The connectivity of the
system is defined by connectivity variables cij ∈ {0, 1}, with cji = cij and cii = 0. Our
neurons evolve according to Glauber-type local field alignment at temperature T = β−1, with
the fields defined by hi = ∑

j

cij

c

∑p

µ=1 ξ
µ

i ξ
µ

j σj , i.e. with Hebbian interactions whenever
cij = 1 (when a bond (i, j) is present). For frozen connectivity {cij } our Ising spin neurons
would equilibrate to a Boltzmann state characterized by the Hamiltonian

Hf(σ, c) = −
∑
i<j

cij

c

p∑
µ=1

ξ
µ

i ξ
µ

j σiσj . (1)

Here σ = (σ1, . . . , σN) and c = {cij }. The
{
ξ

µ

i

} ∈ {−1, 1} with µ = 1, . . . , p represent p
fixed patterns ξµ = (

ξ
µ

1 , . . . , ξ
µ

N

)
to be stored and hopefully recalled. Instead of frozen, we

now take our connectivity to also evolve in time, albeit on time scales much larger than those
of the neuronal relaxation (so the neurons can always be assumed in equilibrium, given the
instantaneous connectivity). This slow process is again taken to be of a Glauber type, but at
temperature T̃ = β̃−1 and with the connectivity Hamiltonian

Hs(c) = − 1

β
log Zf(c) +

1

β̃
log

(
N

c

)∑
i<j

cij (2)

Zf(c) =
∑

σ

e−βHf(σ,c). (3)

The motivation for choosing the latter Hamiltonian is similar to that in [16, 17], in which
slow continuous variables (interaction strengths) were considered. Our present set-up with
the effective Hamiltonian (2) constitutes a translation of this formalism to the present case
of discrete slow variables, now governed by Glauber dynamics. In [16, 17], demanding the
driving forces in the Langevin equation which describes the slow process to be given by neuron
correlations, resulted in gradient descent on an effective Hamiltonian for the slow variables
which is similar to (2). In this latter effective Hamiltonian, the first term (equal to the free
energy of the fast Hamiltonian) produces neuron correlations with respect to the Boltzmann
measure of the fast system. The second term in (2) acts as a chemical potential, ensuring an
average number of c connections per neuron. The pre-factor 1/β̃ will be found helpful later.

The properties of our system at the largest time scales, where also the connectivity has
equilibrated, are characterized by the partition sum of the slow variables:

Zs =
∑

c

e−β̃Hs(c) =
∑

c

[Zf(c)]β̃/β exp


− log

(
N

c

)∑
i<j

cij


 . (4)

This sum is interpreted as describing n = β̃/β replicated copies of the fast system, leading to
a replica theory with finite replica dimension n. Minimization of Hs(c) should give a ‘smart’
arrangement of the connectivity {cij }, tailored to the realization of the patterns, but constrained
to give an average connectivity c. In the remainder of this paper we calculate phase diagrams
and the fraction of mis-aligned spins. Phases are characterized by the values of the replicated
overlap and spin-glass-order parameters

mµ
α = lim

N→∞
N−1

∑
i

〈
ξ

µ

i σ α
i

〉
qαβ = lim

N→∞
N−1

∑
i

〈
σα

i σ
β

i

〉
. (5)
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Here 〈· · ·〉 denotes averaging over all geometries {cij } and all spin-configurations σα in each
of the replicas α = 1, . . . , n, with the Boltzmann measure associated with (4):

〈G({σα}, c)〉 = Z−1
s

∑
{σα}

∑
c

G({σα}, c)

× exp


β

c

∑
i<j

cij

∑
µ

ξ
µ

i ξ
µ

j

n∑
α=1

σα
i σ α

j − log

(
N

c

)∑
i<j

cij


 . (6)

3. Equilibrium analysis

3.1. Calculation of the RS free energy

The thermodynamic properties of the stationary state, with equilibrated connectivity, are
derived from the asymptotic free energy per spin f = −limN→∞(β̃N)−1 log Zs. Upon
performing the trace over all geometries in (4) one obtains, with σi = (

σ 1
i , . . . , σ n

i

)
:

Zs =
∑

σ1···σn

∏
i<j

[
1 +

c

N
exp

(
β

c
(ξi · ξj )(σi · σj )

)]
. (7)

In evaluating the free energy we make the usual ‘condensed’ ansatz: only a finite number r of
patterns will be structurally correlated with the system state. The remaining αc − r patterns
can be treated as frozen disorder, over which the free energy may be averaged. For the result
we write [f ]dis. In this paper, we work within the connectivity scaling regime of extreme
dilution, where limN→∞ c/N = limN→∞ c−1 = 0. Now one obtains

−β̃[f ]dis = lim
N→∞

1

N
log

∑
σ1···σn

× exp


 β

2N

∑
ij

(σi · σj )
∑
µ�r

ξ
µ

i ξ
µ

j +
αβ2

4N

∑
ij

(σi · σj )
2 + O

(
N

c

)
 (8)

(modulo irrelevant additive constants). We define the familiar pattern and state overlaps
mαµ(σ) = N−1 ∑

i ξ
α
i σi and qαβ({σ}) = N−1 ∑

i σ
α
i σ

β

i . They are introduced via appropriate
δ-distributions, so that the spin traces can be carried out. This results in the usual type of
steepest descent expression for [f ]dis (again modulo constants):

[f ]dis = extr{mαµ,qαβ }


αβ

4n

∑
α �=β

q2
αβ +

1

2n

∑
α

∑
µ�r

m2
αµ

− 1

nβ

〈
log

∑
σ1···σn

exp


β

∑
α

∑
µ�r

mαµξµσα +
1

2
αβ2

∑
α �=β

qαβσασβ



〉

ξ


 (9)

where 〈g(ξ)〉ξ = 2−r
∑

ξ∈{−1,1}r g(ξ). The parameter c represents the ensemble averaged
connectivity. This follows upon adding suitable generating fields to the slow Hamiltonian:
Hs(c) → Hs(c) + 2λ

c

∑
i<j cij . Repeating the above calculation with the added fields shows

that limN→∞ 2
Nc

∑
i<j cij = limλ→0

∂[f ]dis

∂λ
= 1, which proves our claim.

We next make the replica-symmetric ansatz for the physical saddle-point: mαµ = mµ for
all (α, µ) and qαβ = q + δαβ(1 − q) for all (α, β), keeping in mind that the replica dimension
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n can take any non-negative value:

[f ]RS
dis = extr{mµ,q}




1

2

∑
µ�r

m2
µ +

1

4
αβ[2q + (n − 1)q2]

− 1

nβ

〈
log

∫
Dz coshn


β


∑

µ�r

mµξµ + z
√

αq






〉
ξ


 . (10)

Variation of {mµ, q} gives the saddle-point equations for our RS order parameters, with the
shorthand � = β

(∑
µ�r mµξµ + z

√
αq

)
, which are of the familiar form

mµ =
〈
ξµ

∫
Dz tanh(�) coshn(�)∫

Dz coshn(�)

〉
ξ

(11)

q =
〈∫

Dz tanh2(�) coshn(�)∫
Dz coshn(�)

〉
ξ

. (12)

The physical meaning of the RS order parameters is mµ = limN→∞ N−1 ∑
i

〈
ξ

µ

i σi

〉
and

q = limN→∞ N−1 ∑
i 〈σi〉2, as usual.

3.2. Phase transitions and phase diagrams

If one simplifies matters further by assuming only one pattern to be condensed, i.e.
mµ = mδµ,1, then equations (11) and (12) reduce to

m =
∫

Dz tanh[β(m + z
√

αq)] coshn[β(m + z
√

αq)]∫
Dz coshn[β(m + z

√
αq)]

(13)

q =
∫

Dz tanh2[β(m + z
√

αq)] coshn[β(m + z
√

αq)]∫
Dz coshn[β(m + z

√
αq)]

. (14)

These are recognized to be identical to those of the finite n model studied in [27] if we re-define
the parameters in the latter according to

J (1)m/k → m J (2)q/k → αβq. (15)

This makes sense, since the n → 0 limit of our present model (i.e. the symmetrically extremely
diluted Hopfield model with quenched random connectivity [26]) is known to map onto the
n → 0 limit of [27], (i.e. the SK model [28]). Clearly one finds simplified equations for
the special dimension values n = 1 (equivalent to having annealed connectivity) and n = 2,
where the Gaussian integrals can be done. For instance, at n = 1 the equation for m reduces
to m = tanh(βm), whereas for n = 2 one finds

m = sinh(2βm)

cosh(2βm) + e−2αβ2q
q = cosh(2βm) − e−2αβ2q

cosh(2βm) + e−2αβ2q
. (16)

Our RS equations admit three phases: a paramagnetic phase (P) with m = q = 0, a recall
phase (R) where m �= 0 and q > 0, and a spin-glass phase (SG) where m = 0 but q > 0. Since
deriving the RS phase transitions has been reduced to appropriate translation of the results
found in [27], we will here simply mention the outcome:

• For sufficiently small α one will find a P → R transition at a finite temperature. For
α < αc = 1

3n−2 this transition is second order, and occurs at TR = 1.
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Figure 1. RS phase diagram in the space of control parameters. We show the critical temperature(s)
as surface(s) over the (α, n) plane. The high-temperature phase is paramagnetic (P). At low
temperature, we find the retrieval phase R. For (α, n) values with two critical temperatures, the
latter define the boundaries of a spin-glass phase SG. The P → R transitions are second order for
α < 1

3n−2 , and first order elsewhere. The P → SG transitions are second order for n < 2 and first
order elsewhere. For large α the SG → R transitions become second order, but for small α they
are first order.

• For larger α, lowering the temperature will lead first to a P → SG transition, followed at
some yet lower temperature by a SG → R transition4. For n � 2 the P → SG transition
is second order, and occurs for TSG = √

α.
• The SG → R transition is second order for α → ∞, where its transition temperature

tends to Tc = n, but first order for sufficiently small α.
• The effects of increasing the replica dimension n are (i) a reduction of the size in the

phase diagram of the SG phase, and (ii) a change of the orders of the P → R and P → SG
transitions, from second order (for small n) to first order (for large n).

Numerical solution of equations (13) and (14) leads to the RS phase diagram drawn in
figure 1. Figure 2 shows intersections of this diagram in the planes of constant replica
dimension n = 0.1 and n = 2. All transitions discussed and drawn above refer to
bifurcations of locally stable solutions, since for recurrent neural networks the time scales
where thermodynamic stability would become an issue are in practice never reached.

We finally turn to replica symmetry breaking. The location in our phase diagram of
second-order RSB phase transition follows upon the inspection of the eigenvalues of the
Hessian. Since our model can be mapped onto the nonzero-n SK-model [27], we can read
off the eigenvalues from [29]. The dangerous eigenvalue λRSB is the one associated with the
so-called replicon mode:

λRSB = αβ2[1 − αβ2[1 − 2q + h(m, q)]] (17)

h(m, q) =
∫

Dz tanh4[β(m + z
√

αq)] coshn[β(m + z
√

αq)]∫
Dz coshn[β(m + z

√
αq)]

. (18)

4 For small values of n, the latter SG → R transition is expected to disappear when replica symmetry breaking is
taken into account.
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Figure 2. Intersections of the phase diagram shown in figure 1, at n = 0.1 (left) and n = 2 (right).
We have paramagnetic (P), recall (R) and spin-glass (SG) phases. We note that there is no critical
value for α above which recall is no longer possible. Instead, the SG → R transition line will
approach the line T = n for large α. Since RSB phenomena appear to be confined to n < 1 (see
below), this is not an artefact of the RS assumption. For large n, all phase transitions ultimately
become first order.

0 1 2 3 4 5 6
β

0

0.1

0.2

0.3

0.4

0.5

α=0.5
α=1.0
α=1.5
α=4.0

nc

Figure 3. Location of the AT instability nc, shown as a function of the inverse temperature
β = T −1, and for a number of different storage ratios α. Replica symmetry breaking is seen to
be limited to the values of n below 0.32. We also note the non-monotonic dependence on the
temperature of the critical dimension nc for fixed α.

Replica symmetry is stable only if λRSB > 0. For each combination (α, T ), one finds a critical
value nc(α, T ) (the AT line) below which replica symmetry is unstable. Examples of the
behaviour of nc(α, T ) are shown in figure 3. Replica symmetry breaking is found to occur
only for n < 0.32.

Compared to diluted neural network models with static random connectivity, the main
effect of introducing dynamic connectivity (with the present Glauber dynamics, aimed
at reducing frustration) is to reduce the spin-glass phase in favour of the recall phase.
The connectivity adjusts itself autonomously in order to retrieve the condensed pattern
optimally, to such an extent that for sufficiently low temperature there is no upper limit
on the storage ratio (provided we do not leave the ‘extreme dilution’ scaling regime
limN→∞ c/N = limN→∞ c−1 = 0). This then raises the question of whether the other
(non-condensed) patterns can be retrieved at all after the connectivity has been tailored to the
recall of one specific condensed pattern. This is investigated in section 5.
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4. Fraction of misaligned spins

We expect the observed improvement of retrieval performance due to the slow connectivity
dynamics to be reflected in a reduction with increasing n of the fraction of frustrated bonds
in the system. To verify this we calculate a different but similar quantity: the fraction φ of
misaligned spins, i.e. those where σi and local field hi have opposite sign:

φ = lim
N→∞

1

N

∑
i




〈
θ


−σi

∑
j

cij

c

∑
µ

ξ
µ

i ξ
µ

j σj




〉


dis

. (19)

To calculate this object one could introduce further replicas, but here we follow an alternative
route: we solve our model first for finite c, in which case joint replicated spin–field distributions
(in terms of which φ can be expressed) become the natural order parameters, followed by taking
the limit c → ∞.

4.1. Calculation of the joint spin–field distribution

To do so we have to adapt and generalize the calculation in [30] by first introducing the 2p

so-called sub-lattices [31], with ξi = (
ξ 1
i , . . . , ξ

p

i

)
:

Iξ = {i|ξi = ξ} pξ = |Iξ|/N. (20)

Since c is assumed finite, so is p = αc. We write
∑

ξ pξ�(ξ) = 〈�(ξ)〉ξ; for randomly drawn
patterns limN→∞ pξ = 2−p. For finite c our analysis will start to resemble that in [32]. In
each sublattice, we may define a joint distribution for replicated spins and fields, and (with a
modest amount of foresight) conjugate fields:

Pξ(σ, h, ĥ) = |Iξ|−1
∑
i∈Iξ

δσ,σi
δ[h − hi ({σ})]δ[̂h − ĥi ({σ})] (21)

where σ ∈ {−1, 1}n, h, ĥ ∈ R
n and hα

i ({σ}) = ∑
j

cij

c
(ξi · ξj )σ

α
j . In evaluating the free

energy per spin we write the fast Hamiltonian in terms of replicated fields and introduce (21)
by inserting suitable integrals over δ-functions. This is done first only for discrete values
of h, with the continuum limit (converting integrals into path integrals) to be taken after the
thermodynamic limit. We abbreviate {dP dP̂ } = ∏

ξ,σ,h,̂h[dPξ(σ, h, ĥ) dP̂ ξ(σ, h, ĥ)] and
find

−β̃f = lim
N→∞

1

N
log

∑
c

∑
σ1···σn

exp


β

2

∑
i

σi · hi ({σ}) − log

(
N

c

)∑
i<j

cij




= lim
N→∞

1

N
log

∫
{dP dP̂ } exp


N

〈∑
σ

∫
dh dĥPξ(σ, h, ĥ)

×
[

iP̂ ξ(σ, h, ĥ) +
1

2
β(σ · h)

] 〉
ξ


∫ ∏

i

[
dhi dĥi

(2π)n
eîhi ·hi

]

×
∑

σ1···σn

exp


−i

∑
ξ

∑
i∈Iξ

P̂ ξ(σi , hi , ĥi )




×
∏
i<j

[
1 +

c

N
exp

(
− i

c
(ξi · ξj )[(ĥi · σj ) + (ĥj · σi )]

)]
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= lim
N→∞

1

N
log

∫
{dP dP̂ } exp


N

〈∑
σ

∫
dh dĥPξ(σ, h, ĥ)

×
[

iP̂ ξ(σ, h, ĥ) +
1

2
β(σ · h)

] 〉
ξ




× exp


 c

2
N

〈〈∑
σσ′

∫
dh dh′ dĥ dĥ′Pξ(σ, h, ĥ)Pξ′(σ′, h′, ĥ′)

×exp
(
− i

c
(ξ · ξ′)[(ĥ · σ′) + (ĥ′ · σ)]

) 〉
ξ

〉
ξ′




×
∫ ∏

i

[
dhi dĥi

(2π)n
exp(îhi · hi )

] ∑
σ1···σn

exp


−i

∑
ξ

∑
i∈Iξ

P̂ ξ(σi , hi , ĥi )




= lim
N→∞

1

N
log

∫
{dP dP̂ } exp


N

〈∑
σ

∫
dh dĥPξ(σ, h, ĥ)

×
[

iP̂ ξ(σ, h, ĥ) +
1

2
β(σ · h)

] 〉
ξ




× exp


 c

2
N

〈〈∑
σσ′

∫
dh dh′ dĥ dĥ′Pξ(σ, h, ĥ)Pξ′(σ′, h′, ĥ′)

× exp
(
− i

c
(ξ · ξ′)[(ĥ · σ′) + (ĥ′ · σ)]

) 〉
ξ

〉
ξ′




× exp


N

〈
log



∫ [

dh dĥ
(2π)n

exp(îh · h)

] ∑
σ∈{−1,1}n

exp(−iP̂ ξ(σ, h, ĥ))




〉
ξ




= extr{P,P̂ }




〈∑
σ

∫
dh dĥPξ(σ, h, ĥ)

[
iP̂ ξ(σ, h, ĥ) +

1

2
β(σ · h)

]〉
ξ

+
1

2
c

〈〈∑
σσ′

∫
dh dh′ dĥ dĥ′Pξ(σ, h, ĥ)Pξ′(σ′, h′, ĥ′)

× exp
(
− i

c
(ξ · ξ′)[(ĥ · σ′) + (ĥ′ · σ)]

) 〉
ξ

〉
ξ′

+

〈
log



∫ [

dh dĥ
(2π)n

exp(îh · h)

] ∑
σ∈{−1,1}n

exp(−iP̂ ξ(σ, h, ĥ))



〉

ξ


 . (22)



7662 B Wemmenhove et al

Extremization with respect to Pξ(σ, h, ĥ) and P̂ ξ(σ, h, ĥ) gives the following two saddle-point
equations:

P̂ ξ(σ, h, ĥ) = ic

〈∑
σ′

∫
dĥ′ Pξ′(σ′, ĥ′)

×exp
(
− i

c
(ξ · ξ′)[(ĥ · σ′) + (ĥ′ · σ)]

) 〉
ξ′

+
1

2
iβ(σ · h) (23)

Pξ(σ, h, ĥ) = exp(îh · h − iP̂ ξ(σ, h, ĥ))∫
dh′ dĥ′ exp(îh′ · h′)

∑
σ′∈{−1,1}n exp(−iP̂ ξ(σ′, h′, ĥ′))

. (24)

Insertion of (23) into (24) gives a saddle-point equation in terms of P only:

Pξ(σ, h, ĥ) = Z−1
ξ exp


îh · h +

1

2
β(σ · h)

+ c

〈∑
σ′

∫
dĥ′ Pξ′(σ′, ĥ′) exp

(
− i

c
(ξ · ξ′)[(ĥ · σ′) + (ĥ′ · σ)]

)〉
ξ′


 (25)

with Zξ denoting a normalization constant. According to (21), the physical meaning of the
saddle-point is

Pξ(σ, h, ĥ) = lim
N→∞

1

|Iξ|
∑
i∈Iξ

〈δσ,σi
δ[h − hi ({σ})]δ[̂h − ĥi ({σ})]〉. (26)

We next make the one pattern condensed ansatz (this is not essential for being able to
proceed, but will simplify and compactify our derivation significantly), which here implies
Pξ(σ, h, ĥ) = Pξ1(σ, h, ĥ), and we send c → ∞. As a result (ξ · ξ′)/

√
c = ξ1ξ

′
1/

√
c +

√
αz

where z is a zero-average unit-variance Gaussian variable, and

Pξ (σ, h, ĥ) = Z−1
ξ exp


îh · h +

1

2
β(σ · h) −

〈∑
σ′

∫
dĥ′Pξ ′(σ′, ĥ′)

×
[

i(ξξ ′)[(ĥ · σ′) + (ĥ′ · σ)] +
α

2
[(ĥ · σ′) + (ĥ′ · σ)]2

] 〉
ξ ′


 . (27)

In the right-hand side of (27) we are seen to need only the following moments of our
distributions (which include the previously encountered {mα, qαβ}):

mα =
〈
ξ
∑

σ

∫
dĥ Pξ (σ, ĥ)σα

〉
ξ

qαβ =
〈∑

σ

∫
dĥ Pξ (σ, ĥ)σασβ

〉
ξ

kα = i

〈
ξ
∑

σ

∫
dĥ Pξ (σ, ĥ)ĥα

〉
ξ

Lαβ =
〈∑

σ

∫
dĥ Pξ (σ, ĥ)ĥαĥβ

〉
ξ

Kαβ = i

〈∑
σ

∫
dĥ Pξ (σ, ĥ)σαĥβ

〉
ξ

.
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Integration by parts over the fields in (27) shows that kα = − 1
2βmα , Kαβ = − 1

2βqαβ and
Lαβ = − 1

4β2qαβ . The replicated joint spin–field distributions can now be written as

Pξ (σ, h)

= exp
(
ξβm · σ + 1

2αβ2σ · qσ − 1
2α

(h − ξm − αβqσ)q−1(h − ξm − αβqσ)
)

∑
σ′

∫
dh′ exp

(
ξβm · σ′ + 1

2αβ2σ′ · qσ′ − 1
2α

(h′ − ξm − αβqσ′)q−1(h′ − ξm − αβqσ′)
)

(28)

with m = {mα} and q = {qαβ}. The latter obey the following familiar closed equations which
in the RS ansatz lead one back to (13), as they should:

mα =
〈
ξ

∑
σ σα exp

(
ξβm · σ + 1

2αβ2σ · qσ
)

∑
σ exp

(
ξβm · σ + 1

2αβ2σ · qσ
)

〉
ξ

(29)

qαβ =
〈∑

σ σασβ exp
(
ξβm · σ + 1

2αβ2σ · qσ
)

∑
σ exp

(
ξβm · σ + 1

2αβ2σ · qσ
)

〉
ξ

. (30)

4.2. Fraction of mis-aligned spins in the RS ansatz

The fraction φ defined in (19) can be written as φ = 〈φξ 〉ξ , where the sublattice fractions φξ

are expressed in terms of the replicated distributions (28) in the following way:

φξ = 1

2
− 1

2

∑
σ

∫
dh Pξ (σ, h)

1

n

∑
γ

σγ sgn[hγ ]

= 1

2
− 1

2n

∑
γ



(∑

σ

σγ exp

(
βm · σ +

1

2
αβ2σ · qσ

)∫
dx

× sgn


mγ + αβ

∑
β

qγβσβ +
√

αxγ


 exp

(
−1

2
x · q−1x

))

×
( ∑

σ

exp

(
βm · σ +

1

2
αβ2σ · qσ

)∫
dx exp

(
−1

2
x · q−1x

))−1

 . (31)

We see that the φ1 = φ−1. At this stage we make the RS ansatz, putting mα = m and
qαβ = q + δαβ(1 − q), which results in

φRS = 1

2
− 1

2



(∫

Dz
∑

σ

σ1 exp

(
β
∑

α

σα(m + z
√

αq)

)∫
Dx sgn

[
m + αβ


σ1 + q

∑
β>1

σβ




+
√

αx

])(∫
Dz

∑
σ

exp

(
β
∑

α

σα(m + z
√

αq)

))−1



= 1

2
− 1

2

{(∫
Dx Dy Dz

∑
σ

σ1 exp

(
β
∑

α

σα(m + z
√

αq) + (x − iy)
√

αβ

×
(

σ1 + q
∑
α>1

σα

))
sgn[m +

√
αx]

)(∫
Dz[2 cosh[β(m + z

√
αq)]]n

)−1
}

.
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We carry out the spin summations over σα with α > 1. A shift in the complex plane for the
variable z in the numerator, z → z − √

q(x − iy), followed by integration over y and some
simple manipulations, converts this expression into

φRS = 1

2
− 1

4

{(∫
Dx Dz sgn

[
z
√

q + x
√

1 − q + β
√

α(1 − q) +
m√
α

]

× exp(β(z
√

αq + m)) coshn−1[β(z
√

αq + m)]

)(∫
Dz coshn[β(z

√
αq + m)]

)−1
}

− 1

4

{(∫
Dx Dz sgn

[
z
√

q + x
√

1 − q + β
√

α(1 − q) − m√
α

]
exp(β(z

√
αq − m))

× coshn−1[β(z
√

αq − m)]

)(∫
Dz coshn[β(z

√
αq − m)]

)−1
}

= 1

2
− 1

4

{(∫
Dz Erf

[
z
√

αq + βα(1 − q) + m√
2α(1 − q)

]
exp(β(z

√
αq + m)) coshn−1

× [β(z
√

αq + m)]

)(∫
Dz coshn[β(z

√
αq + m)]

)−1
}

− 1

4

{(∫
Dz Erf

[
z
√

αq + βα(1 − q) − m√
2α(1 − q)

]
exp(β(z

√
αq − m)) coshn−1

× [β(z
√

αq − m)]

)(∫
Dz coshn[β(z

√
αq − m)]

)−1
}

. (32)

In the paramagnetic state, where m = q = 0, this simplifies further to

φRS = 1

2
− 1

2
Erf

[
β

√
α

2

]
. (33)

In the recall and spin-glass states the evaluation of (32) requires the (numerical) solution of
the RS order parameters {m, q} from (13). Examples of the resulting curves as functions of
temperature are shown in figure 4, for α ∈ {0.1, 0.5, 1.0} and n ∈ {1, 2, 3, 4, 5}. We note
that for these values of n, the replica symmetry should be stable. The fraction of misaligned
spins is seen to decrease with increasing n (i.e., with decreasing connectivity temperature), as
expected. This effect becomes more pronounced for larger α, where the amount of frustration
to be reduced by the connectivity dynamics should indeed be largest. The first-order phase
transitions (see subsection 3.2) induce discontinuities in φ at the critical temperature, clearly
recognizable for α = 0.5, 1 and n = 2, 3, 4, 5, and just visible for α = 0.1 and n = 5. In the
paramagnetic phase (large T) we see that φRS is independent of n, in accordance with (33).

4.3. Comparison with numerical simulations

In order to perform numerical simulations, we need an explicit stochastic dynamical equation
for updating of the network connectivity variables c = {cij }, which must approach the
appropriate Boltzmann equilibrium state characterized by the slow Hamiltonian (2). Here
we used a Glauber-type Markov process, where candidate bonds cij are drawn randomly at
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Figure 4. The fraction φRS of misaligned spins as a function of temperature, in the RS ansatz, for
integer values of n between 1 and 5, and α = 0.1, α = 0.5 and α = 1 respectively, as a function of
temperature. The degree of alignment of spins with their local fields increases with n outside the
paramagnetic phase. In the paramagnetic phase, there is no dependence on n. One sees clearly the
effect of the first-order phase transitions, at α = 0.1 only for n = 5, and for α = 0.5 and α = 1
for all n � 2, appearing as discontinuities in φ at the critical temperature.

each iteration step and then flipped with probability W [Fij c; c], where Fij denotes the bond
switch operator defined by Fij cij = 1 − cij , Fij ck� = ck� if (i, j) �= (k, �):

W [Fij c; c] = 1

2

{
1 − tanh

(
β̃

2
[Hs(Fij c) − Hs(c)]

)}
. (34)

Detailed balance is built in. Upon inserting the slow Hamiltonian (2) and using the scaling
property limN→∞ c/N = 0 of our present extreme dilution regime, one can for large N rewrite
our transition probabilities as

W [Fij c; c] = 1

2

{
1 − tanh

[
1

2
(2cij − 1)

[
log

( c

N

)
+

β̃

c

∑
µ

ξ
µ

i ξ
µ

j 〈σiσj 〉
]]}

(35)

where, as before, 〈· · ·〉 indicates an equilibrium average for the fast system, in Boltzmann
equilibrium with Hamiltonian (1), for a given connectivity matrix c.

In the present type of systems with multiple adiabatically separated time scales and nested
equilibrations, the verification of theoretical results by numerical simulations is known to be
a highly demanding task. Even without the evolving connectivity, full equilibration of the
spins requires relaxation times which diverge with N faster than polynomially. If on top of
this one aims to also approach a connectivity equilibrium, which involves O(N2) stochastic
degrees of freedom, the system sizes accessible in practice for numerical experimentation are
small. Thus profound finite-size effects are unavoidable. It turns out that, when simulating
the process (35), the connectivity equilibration times are indeed extremely long, especially
close to phase transitions. This limits our ambitions regarding size, with the standard CPU
resources at our disposal, to the order of N ∼ 102 spins. Since in our chosen scaling regime of
extreme dilution, we have to simultaneously minimize c−1 and cN−1, we have in our numerical
experiments chosen c = √

N .
Different macroscopic quantities could in principle be used for testing our theory against

experiments. The advantage of observables such as m and φ is that they can be measured
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Figure 5. Comparison between simulation measurements (all with N = 200) and RS theoretical
predictions for the fraction of misaligned spins φ = N−1 ∑

i θ [−σihi ] (where hi is the local field
at site i), as functions of temperature. The data shown refer to α = 0.5 with n = 2 (simulations:
connected squares; theory: dashed lines) or n = 3 (simulations: connected circles; theory: dotted-
dashed lines). Because of the need to equilibrate two nested disordered processes, conventional
computer resources limit experimentation to modest values of N. In spite of the resulting finite size
effects, the graph does show satisfactory qualitative agreement between theory and experiment.

instantaneously, in contrast with the spin-glass order parameter q. Here we have opted for the
fraction of misaligned spins φ. The results are shown in figure 5, where we observe qualitative
agreement between theory and the simulations. The deviations observed in such experiments
are found to decrease with the increasing system size N, albeit slowly.

5. Stability of non-condensed retrieval states

The significant enlargement of the retrieval phase caused by our connectivity adaptation (see,
e.g., figures 1 and 2) could have a drawback that retrieval of patterns other than the condensed
one becomes impossible. Here we address the question of whether the present ‘tailoring’ of
the connectivity variables {cij } to one condensed state will leave a finite basin of attraction for
the non-condensed patterns, or whether recalling the latter requires a rewiring of the system
(e.g., by temporarily raising the temperature T̃ ) to undo the established connectivity. For large
α most retrieval states must be unstable for any given connectivity in the extreme dilution
scaling regime, since Gardner-type optimal capacity calculations for diluted networks predict
a finite storage capacity [33].

To answer our question we will study a second (fast) spin system of N spins τ = {τi},
governed again by the fast Hamiltonian (1), with patterns and connectivity identical to that of
the first. In particular, the connectivity statistics are again given by

P(c) = Z−1
s e−β̃Hs(c). (36)

The slow Hamiltonian Hs(c) continues to be defined in terms of the original spins σ, assumed
in a condensed state characterized by a finite overlap with the first pattern, and will therefore
be tailored towards the recall of that particular pattern. By studying in the τ system the
properties of states which are condensed in patterns two or higher, we gain access to the
stability of non-condensed retrieval states in the original σ system.
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The connectivity-averaged free energy per spin of our new system is calculated by using
the replica trick in its conventional form, i.e. via

[fτ ] = − lim
n̂→0

lim
N→∞

1

βn̂N
log



∑

c

P(c)

[∑
τ

exp(−βHf(τ , c))

]n̂



= − lim
n̂→0

lim
N→∞

1

βn̂N
log


Z−1

s

∑
{σα}

∑
{τ γ }

∑
c

exp


− log

(
N

c

)∑
i<j

cij




× exp


β

c

∑
i<j

cij (ξi · ξj )


 n∑

α=1

σα
i σ α

j +
n̂∑

γ=1

τ
γ

i τ
γ

j






 . (37)

The next stages of analysis are sufficiently similar to those followed earlier to justify limiting
ourselves to giving the final result in the RS approximation. If again we assume at most r
patterns to be condensed we find

[fτ ]RS = extr{m̂µ,q̂,a}


1

2

∑
µ�r

m̂2
µ − 1

4
αβ(q̂ − 1)2 +

1

2
αβna2 − 1

β
log 2

− 1

β

〈∫
Dy Dz coshn(�1) log cosh(�2)∫

Dy coshn(�1)

〉
ξ


 (38)

�1 = β(m · ξ + y
√

αq) (39)

�2 = β

(
m̂ · ξ +

a

q

√
αq[y + z

√
q̂q/a2 − 1]

)
. (40)

In addition to the previously encountered order parameters {m, q}, which relate to the σ system
(and continue to be defined as the solution of the earlier saddle-point equations), we now have
new order parameters {m̂, q̂, a}, whose physical meaning is found to be

m̂µ = lim
N→∞

1

N

∑
i

〈
ξ

µ

i τi

〉
q̂ = lim

N→∞
1

N

∑
i

〈τi〉2 a = lim
N→∞

1

N

∑
i

〈σiτi〉.

The new order parameters are to be solved from the saddle-point equations

m̂µ =
〈
ξµ

∫
Dy Dz tanh(�2) coshn(�1)∫

Dy coshn(�1)

〉
ξ

q̂ =
〈∫

Dy Dz tanh2(�2) coshn(�1)∫
Dy coshn(�1)

〉
ξ

(41)

a =
〈∫

Dy Dz tanh(�1) tanh(�2) coshn(�1)∫
Dy coshn(�1)

〉
ξ

.

It can be shown that solutions of these equations will obey a2 � q̂q (to be expected in view
of the square root in �2).

We now adopt a condensed ansatz which corresponds to the τ system being in a condensed
state which differs from that of the σ system (where the latter drives the connectivity evolution):
mµ = mδµ1, m̂µ = m̂δµ2. Solutions of this type must have a = 0, which is reasonable
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Figure 6. Cross-sections for fixed n of the expanded phase diagram, in which the previous retrieval
phase R has been separated into two sub-regions: R1 defines the phase where only the nominated
pattern can be recalled to which the connectivity has been tailored, and R2 defines the phase where,
in spite of the biased connectivity, all stored patterns can still be recovered. From left to right:
n = 1, 2, 3.

considering that any finite correlation between the τ and σ systems makes m̂1 = 0 highly
improbable. For a = 0 our two systems decouple, with the equations for m̂ and q̂ reducing to

m̂ =
∫

Dz tanh(β[m̂ + z
√

αq̂]) (42)

q̂ =
∫

Dz tanh2(β[m̂ + z
√

αq̂]). (43)

These are exactly the RS equations of the model with frozen random dilution [26]. The
m̂1 = a = 0 solutions of our saddle-point equations could be unstable against perturbations
in m̂1 and a. In the paramagnetic phase, an expansion of the free energy up to second order in
the order parameters gives

[fτ ]RS = extr{µ̂,q̂,a}

{
1

2
(1 − β)

∑
µ

m̂2
µ − 1

4
αβq̂2 +

1

2
αβa2 + higher orders

}

indicating that the physical solution of the saddle-point equations is the one which minimizes
the free energy with respect to m̂ and a, and maximizes it with respect to q̂, as is usual in the
limit n̂ → 0 [23]. Expansion around m̂1 = a = 0, with nonzero m̂2 and q̂, reveals that a
second-order instability in a occurs at the temperature

Tc =
√

α(1 − q̂)[1 + (n − 1)q]. (44)

Below Tc the τ system will be captured in the m̂µ = m̂δµ1 state, with m̂1 = m (so retrieval
of states other than that to which the connectivity has adapted is impossible), whereas above
Tc the τ system can be in a locally stable condensed state different from that in which the σ
system is found. The free energy of the m̂µ = mδµ1 state is, however, always lower than that
of other retrieval states, at any temperature. This implies that in the latter states the τ system
can be at most locally stable. The line (44) has been calculated in the RS ansatz; this seems
reasonable, since in the model of [26] RSB does not occur for n � 1. In figure 6, we show for
n ∈ {1, 2, 3} the line (44) which separates the previous retrieval phase R into two sub-regions,
one R1 where only recall of one single pattern is possible (the one to which the connectivity is
tailored), and a second region R2 where, in spite of the biased connectivity, multiple patterns
can be recalled. As expected, increasing n (i.e. reducing the connectivity temperature, so the
‘tailoring’ of the connectivity becomes more effective) reduces the size of the R2 region.
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6. Conclusion

We have studied extremely diluted recurrent neural networks in which the connectivity is
allowed to evolve on time scales which are adiabatically slower than the equilibration time of
the (fast) neurons. In contrast to earlier studies, the actual values of the bonds remain frozen
(they are here given by Hopfield’s [1] recipe) and only the connectivity is dynamic, which
implies that the slow adaptation is reversible and will not wipe out any stored information.
Our motivation was to investigate whether, by having a connectivity dynamics which aims to
reduce frustration, the information retrieval properties of the system can be improved. As in
earlier models with slow bond dynamics [16–22] the equilibrium properties of our model are
described by a replica theory with nonzero replica dimension n, where n = β̃/β is the ratio
between the temperature of the (fast) neurons and the temperature of the (slow) connectivity.

We have calculated phase diagrams, reflecting the stationary state of the slowest stochastic
system (i.e. the connectivity). They reveal a boosting of the retrieval phase, compared to the
frozen connectivity case, as soon as n > 0. In fact, for nonzero n the storage capacity
diverges at low temperatures, as long as p 
 N . This at first sight somewhat surprising
result is explained by the observation that, in tailoring the connectivity to the recall of a
single condensed pattern, the system sacrifices the recall quality of an infinite number of non-
nominated patterns. RSB effects are as always confined to small values of n (below approx.
0.32). In order to measure the expected reduction in frustration as a result of the connectivity
dynamics, we have calculated the fraction of mis-aligned spins (where spin and local field are
of the opposite sign). This fraction is indeed found to decrease with decreasing temperature
of the connectivity. In order to examine in which region of the phase diagram retrieval states
other than the condensed pattern are still locally stable, we studied a pair of identical diluted
networks, both with the same Boltzmann-type connectivity distribution. The connectivity is
tailored to reduce frustration in only the first of the two copies. This allows one to study
scenarios corresponding to the recall of patterns (in the second copy) which are not the one to
which the connectivity is adapted. Such recall is seen to be possible, but only in a sub-region
of the recall phase, whose size decreases with increasing n.

It would appear an interesting question to examine to what extent the properties of our
model with slowly evolving connectivity persist in more (biologically) realistic scenarios,
e.g. when the average number of connections c per neuron remains finite when N → ∞.
Such studies will involve order-parameter functions (see e.g. [32, 34]), and require finite n
generalizations of finite connectivity replica theory.
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